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THE LIMIT-POINT, LIMIT-CIRCLE NATURE OF RAPIDLY

OSCILLATING POTENTIALS

F. V. Atkinson, M. S. P. Eastham, and J. B. McLeod

1. Introduction

We consider the Weyl limit-point, limit-circle classification, i.e. the
number of linearly independent solutions in LZ(O, o), of the second-order equation

y'"(x) - q(x)y(x) = 0

(0 < x < )
where the real-valued potential q(x)

’

(1.1)

has the form

a(x) = xp(x") . (1.2)
Here o and B are positive constants and p(t) is a continuous
periodic function of t.

We denote by a the period of p(t).
It is perhaps worth remarking briefly on the significance of the

classification into limit-point and limit-circle for general real-valued
potentiais q(x).

In the limit-point case, the linear operator

dZ

R

+ q(x)
dx2

associated with the equation (1.1) and some homogeneous boundary condition
at x =0, say y(0) = 0, is self-adjoint (and so enjoys a well-defined

spectral theory) without the need to impose any boundary condition at .

In the limit-circle case, on the other hand, the operator does not become
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self-adjoint until its domain is restricted by the imposition of some
suitable boundary condition at «, and for each of these boundary
conditions there is a different spectrum. From the quantum-mechanical
point of view, where we expect a well-defined spectrum without the need
to impose additional boundary conditions, the limit-point case is the
more natural, but a discussion of this and some related topics is given in [10].

If we turn now to the particular case of (1.2), one simple remark can be
made at the outset and this is that, if o <2, (l.2) makes (1.1) limit-point
for all pB. This follows from the well-known Levinson limit-point criterion
q(x) > —ka [4, p. 231], k a positive constant, which is applicable if
a <2 because p(t), being periodic, is bounded below. The situation is
less simple if o > 2 and the object of this paper is to analyse the limit-
point, limit-circle nature of (1.2) for all o« and p. In view of the simple
remark made above, we assume from now on that a > 2.

A partial analysis of two particular cases of (1.2) has already
appeared in the literature. The first case is p(t) = sint, for which
(1. 2) was shown by Eastham [ 5] (see also [12]) to be limit-point if
B <2. Therange P <1 had previously been covered by the work of
Hartman [ 1l1] and McLeod [15-17]. The second case is p(t) = =1 + k sin t,
where k is a constant. This time (l.2) was shown by Eastham [ 6] to
be limit-circle if B > %a + % aﬁd to be limit-point if f <2 and k| >1
(see also [7]). Some corresponding results for fourth-order differential

equations have been given recently by Atkinson [ 2] and Eastham [9].
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Throughout the paper, we denote by M the mean value of p(t) over (0,a), i.e.

-1 a
M=a [ p(tdt.
0
In the paragraphs which follow, we divide our analysis of (1. 2) into various
cases. In the range a <2p - 2, the results depend on whether M = 0,
M >0, or M <0. Intherange a > 2B - 2, the results depend on
whether p(t) takes a positive value or not. These results are summarised
on the accompanying figure. The situation on the line o = 2p - 2 is
a special one and is described in §9 below. It will be seen from the
figure that our analysis is complete as far as the regions o <2 and
a < 2B - 2 are concerned. For the region in which o >2 and a >2p - 2
our analysis is incomplete in that

(i) when p(t) <0 everywhere, differentiability conditions are

imposed on p(t) (see §7 below for a more detailed statement of these

conditions);

(ii) the case where p(t) <0 but p(t) £ 0 everywhere is not fully

dealt with. The situation seems to depend not only on « and p but also

on the order of the zeros of p(t). The information that we have on this

case is given in §8 below.
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included)

(2,2)
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a=2p=2

l.p. if p(t) >0 somewhere

l.c. if p(t) <0 everywhere (and p is

infinitely differentiable)
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2. Thecase M =0, a <P
We define

t
P(t) = [ p(u)du .
0
Then the condition M = 0 implies that P(t) has period a and hence
that P(t) is bounded for all t. We refer now to a particular case of a

limit-point criterion of Brinck [ 3], that (1.1) is limit-point if

f x_lq(x)dx 3~ C (2.1)
]

for all intervals J in, say, [1,%) of length <1, where C is a

constant. In our case of (1.2), we have

[ x “a(x)dx = p ! fxa-ﬁp(xﬂ)d(xp)
J J

Yo -p) [x* P lp(xPyax .

= BT " ey - 67
]

Since P(xﬁ) is bounded for all x > 0 and since we are assuming in
this section that o <@, we have

'f x_lq(x)dxl <C
J

for some constant C, and so (2.1) is certainly satisfied.

That oscillating potentials of the kind considered here might be
covered by (2.1) was suggested by Brinck himself [ 3, p.229] and he gave
the example q(x) = xasin(xaﬂ).

The result, then, of this section is:

0 andlet o <p. Then (1.2) makes (1.1) limit-point.

A let M

-Bu




We remark that A can also be proved by means of a limit-point
criterion which is of the same kind as the one in [ 5] and can even be
deduced from it - that (1.1) is limit-point if there is a sequence of non-

; i 00 bl J = ©0
overlapping intervals (am, bm) in [0, %) with ( S )

m
and such that

(bm - am) { q(x)dx > - C {2 2)

for all intervals ] C (am,bm). This criterion is given specifically in [ 2]

as a particular case of results for higher-order differential equations.

It is also of the same nature as the criterion in [ 3]. The choice to be

1 1

made in our case of (1.2) is a = m?%, b :m2+lm_ 1
m m -4

tul—




3. Thecase M =0, p<a<2Zp-2
We note that, since a > 2, the condition a« <2p - 2 implies
that P > 2. Hence the stated range p <a <23 - 2 is meaningful.
We transform (1.1 - 2) to a more manageable form by means of the

transformation of Liouville type

p

t=x, 2(t) = x

(B-1/2, .

Then we obtain

2 -Zt-ZY

z(t) + {bt " -p p(t)}z(t) = 0,

where b = Zl(l - B_Z) and
2y = 2~ {(a + 2)/8 .
In this section, we determine the asymptotic form of the solutions
of (3.2) as t - ©. Qur method requires that
g <2y <1,
i.e., by (3.3),
B-2<a<2p-2,
and this is certainly ensured by the stated range  <a <2 - 2 .
In (3. 2) we substitute
z(t) = u(t)v(t) ,

where

oint N -2ny -2y-1
v(t) = t7{1 + ) p (Dt + r(t)t ¥
1

(3.

(3.

1)

i)

3)

. 4)

5)

. 6)




Here the integer N 1is chosen to make
(2N + 1)y >3y +1 (3.8)
and the pn(‘t) and r(t) are twice continuously differentiable periodic
functions, with period a, which are defined below.
With the substitution (3.6), (3.2) becomes

2 2 = - -2 -2 :
v ftv g_‘:+uv3[v+{btz—ﬁ tz\p(t)}v):O. (3.9)

Our intention is that the coefficient of u in (3.9) should approach a
positive ~onstantas t — o,
3
Now v~ has the form

3 3N

v = Y1+ Y r (Y 4 o2y
I

1. (3.10)
n

where rn(t) has period a, and rn(t) does not involve pnﬂ(t), ik pN(t).
In particular, we note that

r,(t) = 3"1(” ; (3.11)

Also,

- - - N - — an
Vbt 2-p"% 2Yp(t))v=ty% t Zm’{'pin(t) - 21D(t)pn_1(t)} +{b+ y(y-1))tV%-

Y- t‘(2N+1)Y

+ O(

- ..3_
- 2Yt (t Yl)

b+t () + 0 2

where po(t) =1 and the O-terms refer to t — . By (3. 8), the second
O-term can be neglected. Hence, using also (3.10), the coefficient of

u in (3.9) has the form

et e ATV




3y \'N -2n =
L Y{E)n(t)+sn(t)}* {b+vy(y-DhY*-

-

1

Y-1. =y=1

p.(t) +t

=3¥=1
1 t

S e r(t) + Of ), (3.12)

where sn(t) involves, besides p(t), at most those pj(t) and r),(t)
with j <n -1 and hence at most the p],(t) with j <n -1. We note
in particular that
=2
s)(t) = - g "p(t) (3.13)
and

s.(t) = - 8 2p(tp, (1) + {B:(t) - B 2p(1) (1) (3.14)
2 1 1 1

Let Mn denote the mean value of sn(t) over (0,a). Then the
periodic functions pn(t) are defined for n=1,2,...,N in turn by

bn(t) = - sn(t) + Mn - (3.15)

Also, the periodic function r(t) is defined by

r(t) = 2y bl(t) ; (3.16)

We note that, by (3.13),

M, = -p'2M=o. (3.17)
Also, since i')l(t) = - sl(t) 2 ﬁ—zp(t), again by (3.13), (3.14) gives

5,(1) = = P (UB(1) -
Hence

a * a ,
aM, = { s,(tdt = = [p, () (t)] +{ Py (t)dt .

=




B

—

Thus M‘2 >0 and we write MZ 5 AZ. We now substitute (3.15) and

(3.16) into (3.12). Then (3.12) takes the form

A'Z + R(t) + {b + y(y- 1)}t4Y-2 4 O(t-l; - 3.18)
where
N
ey -(2n-4)y Sy
R(t) = 2, Mnt 4 (3.19)
3
In (3.9), we now make the change of variable
P -} 1s2y -2y
g= [ vnat=(1-2yt “1+0t "}, (3.20)
0
ol
except that the O-term would be O(t &dog o) it 2n = % . Then, writing
u(t) = U(g), R(t) = R(£)
and using (3.18), we can write (3.9) as
dZU 2 -d
*—7+U{A +Rl(g)+0(g YE =iy (3.21)
dg
where
d = min{2, (1 - 2y)'1} -3 (3.22)

We note that, by (3.4) and (3.20), § -® as t +®.

By (3.19), we have

£ g - " feB e <,

and hence the asymptotic form of the solutions of (3. 21) as & — o follows

from the remarks on pp. 91-92 of [ 4]. Thus (3.21) has two solutions




which are asymptotic respectively to

g .
exp(x i [ (A% 4+ R(£))%aE) .
0

In particular, going back through (3.7), (3.6), and (3.1), we find that
(1.1) has two solutions yj(x), (i = 1,2) such that

IY- (x) = pr"(ﬁ-l)/Z
] ’

F.ev b (3.3}

ly. (x) | ~ Sl . (3.23)

J
as x +-». If o >p, these two solutions are both LZ(O,oo ), and
so we have the limit-circle case for (1.1). Thus the result of this section is:

B. Let M =0 andlet B <a <2B - 2. Then (l.2) makes (1.1)

limit-circle.

We pointed out in (3.4 -~ 5) that the above method up to (3.23)
works when B - 2 <a <28 - 2. Therefore it also follows from (3.23)
that, when p - 2 <o <B, (l.2) makes (1.1) limit~point and, to this
extent, we have an overlap with the result A of §2.

We conclude this section by mentioning, first, that our method
has some points of similarity with the one indicated in §§2 and 5 of [18]
and, secondly, that a possible alternative method would be to compare

(3.2) with the periodic equation 2z(t) - « p(t)z(t) = 0, where ¢ is a

small parameter (cf. [1]).

et s W R RN
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4. Thecase M >0, o <2p - 2

Suppose first that o <. Then we can use (2.1) again because now

=]

_{‘x q(x)dx = f Mx* Tdx + [ x_“a{p(xﬁ) - M }dx
] J ]

*l+a{

> [ %7 (p(xP) - M)ax,
J

and this integral is bounded as in §2 since p(t) - M has mean value
zero. Thus the limit-point case occurs.
Now suppose that p <a <2p - 2. Here we need only take the
case N =1 of (3.7) and omit the term involving r(t). Thus we define
v(t) = t¥{1 + pl(t)t—zv} '

where pl(t) is the periodic function defined by

B(t) = 7% {p(1) - M) . (4.1)

Then

2

v+ {btl - g ) v

-2 -

= vy DY 2478 Yp(t) - M)+t 2378 Vp(t) +o(tY) = -Mp "%t Yot V)

since y-2 <-vy. Hence (3.9) is

g 2y -2.2y By L
e 5 u{Mp "t T+ ot ")} =0.

<
I
<

Since {-+*} here is large and positive for large t, this equation has
t
2
solutions which are exponentially (and more) large in £ = f dt/v- . Thus
(¢}

1-2
we have a solution u(t) such that u(t) > exp(k t Y)

, Where k >0.
2
Then certainly the corresponding solution y(x) of (1.1) is not L7(0,%),

and again the limit-point case occurs. Thus the result of this section is:

o

let M >0 and let o < 2p - 2. Then (l.2) makes (1.1) limit-point.

-12-




o

“ 5. Thecase M <0, o <28 -2

Then the situation is covered by

o

Suppose first that p E:_

a t

the analysis in §5§3 - 4 of [ 6] - see especially (4.4) and (4.5) of [ 6].

We again define p.(t) by (4.1) above and then define

1

a-ZBa‘Zp (xp) :

sl = x |

Hence (1. 2) can be written

a(x) = Mx” + s"(x) + o(x*P).
and s(x) satisfies the conditions on S in Theorem 2 (and its modification)
in [ 6]. Then, as in [ 6], we have the limit-circle case.
Suppose next that p - 2 <a < 2B - 2. Thus (3.5) holds and we
i shall consider again the method of §3. We note first, however, that

-
these two sub-cases p > g a +%

and B -2 <a <2B -2 overlap and
between them make up the whole of o < 2B - 2, subject of course to
the condition « > 2 which is assumed throughout.

We make the substitution (3.6 - 7) again. The condition M = 0

which was imposed in §3 was not in fact used until (3.17). If now M # 0,

(3.18) is replaced by

S(t) + {b+ y(y - 1)}t4\(-Z + O(t-l) y

where

-13- %




and, as in (3.17), M, = - p M(# 0 now)

S(t) is

1

- oMty

. Thus the leading term in

L ]

which is large and positive as t - ©. Correspondingly, (3.2l) is

replaced by

where S (£) = S(t).

1

We now substitute

and write

u(e) = s, 4 e)w(e)

3

.. |
I

1

i { SI/Z

(E)dE .

Then we obtain, as we did (3.9) and (3. 21),

2 2
W wa 513/4(§)-975 311/4
dn dg
where W(n) =

Since 2y <1

this inequality being a re-arrangement of

(5.5) is

w(§). By (5.1) and (3. 20), the coefficient of W here is

1+ O(t‘l) + O(t

and d >1, by (3.4) and (3.22), we have

—d(l-Zy)—Zy) :

-d(l -2y)-2y<-1,

1+oud)=1+qq

-14-

(d - (1 - 2y) > 0.

(&) +ole™ s, ")) = 0,

Hence

(5.1)

{5.2)

(5.4)

(5.5)
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by (5.3) and (3.20). Since l/(1 -y) >1, we can again quote pp. 91 - 92
of [ 4] to say that all solutions W(n) of (5.4) are bounded as n = «.
Hence, going back through (5.2), (5.1), (3.7), (3.6), and (3.1), we find
that all solutions y(x) of (1.1) are

O(x{ﬁv-(ﬁ-l)}/?-) - o(x" Y.
as X = . Since « >2, all solutions of (1.1) are, therefore, LZ(O,w)

and we have the limit-circle case. Thus the result of this section is:

D. Let M <0 andlet o« <2p -~ 2. Then (1.2) makes (1.1) limit-circle.

-]8=
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6. The case a > 2p - 2, p(t) taking positive values

In (3.3), we now have y <0 and we write y = - 6, so that
> 0. Then in (3.2) we write
. -2 28 -2
F(t) =p 't p(t) -bt ,
so that

z(t) = F(t)z(t) . (6.1)

Since p(t) is a periodic function which is now assumed to take positive

2 2
values, we can say that there are positive constants A, B, 91, OZ
such that
) 6
AZt2 = Ft) = thz (6.2)
in the intervals (el + na, 92 +na), n=0,1,... . We call these |
intervals (an, bn). By taking 92 - 91 small enough, we can arrange that
3
B < > A. (6. 3)
Let z (t) and z_ _(t) be the solutions of (6.1) defined by
n,l n,2
= 5 & « 4
zn,l(an) 0, zn,l(an) 1 (6.4)
b
n
2 A =g A8 f z—2 (u)du . (6.5)
n, 2 n,l t N,
We note that
"% A P 6.6
(2, 112, JO) = -1 (6.6)

Let N be any integer. From (6.2), we have for n > N

2 2 2 .
by SF() <Kp (6.7)

-1 6=




in (an, bn), where

6 )
T Aan and K = (B/A)sup(bn/an) A
n>N
By (6. 3), we can choose N so that
3
K<3. (6.8)
By (6.7), the theory of differential inequalities [20, p. 69] applied
to (6.1) and (6. 4) gives
; -1 . -1 .
T smh{pn(t an)} < zn,l(t) < (Kpn) smh{Kpn(t an)} : (6.9)
Then (6. 5) gives
sinh{Ku_(t - a_)}sinh b -t
r, (i< h{{“n( “)} . h{u“(b“ )}} (6.10)
n, 2 sin p.n(t - an) sin {pn( e an)
and
AL K sinhip (t - an)}sinh{Kpn(bn -t)} ke
na "~ smh{Kpn(t - an)}sinh{Kun(bn - an)}
Now consider any two real solutions zl(t), zz(t) of (6.1) such that
Wiz, 2,)(t) = 1. (6.12)

In (a_,b_), we must have
n’ n

z,(t) = ann,l(t) + Dnzn,z(t) ’
and (6.6) and (6.12) imply that
AD ~BC ws=}], (6.13)
nn nn
3
“]7=




It follows from (3.1) that (1.1) will be limit-point if, for all intervals

(an,bn) with n large enough,

b b
n . .
r -2+ 2 - 3
either [ zf(t)t 2/ﬁdt >k . or f zz(t)t 242/ >k (6.14)
a a
n n

k being a positive constant independent of n. Now,

b
n
IR - PR 2 g
[z dt=Al |+AB] +BI (6.15)
%n
where
bn Zg (b ~a )
% 2 -2+2/PB “3 =2%&/B- "N n n
In, ) { Zn, l(t)t dt > kp.n a e F
n
by 2(K-1)p_(b_-a_)
§ -2+2/p -2 -242/B ' ®n %n
I = { zn’l(t)zn’ NOL dt <kp_“a_ e ;
n
bn
& 2 -242/p -1 -2+2/p
T2 ™ { zn’z(t)t dt 2 kp_‘a_ :
n
on using (6.9), (6.10), and (6.11). By completing the square in (6.15),
we see that
bn
2, -242/p 2 2
/ .2 ()t dt > An(ln, ', 2 In)/In’ A
a
n
Then (6.14) certainly follows for zl(t) if
-2u (b _-a )
2 3.2-2/8  “"n'"n"%n
A% > ka2 "2/Pe , (6.16)
:
3
'
-18~
i
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2
where, in neglecting In in comparison to In 'In 2 We have used

s ’

the inequality 4(K - 1) < 2, which is implied by (6.8). Similarly,

(6.14) follows for zz(t) if
(b_-a )
C‘Z > k“3a R B

-2
2-2/p Hn
5 e n'n

(6.17)

If neither (6.16) nor (6.17) holds, then, by (6.13), we must have

either
2p (b_-a )
BZZkH 3a 2+2/(3e o i Y (6.18)
n n o
or
2u (b_-a )
D2_>_kp. 3a 2+2/pe it T ’ (6.19)
n n n
and then the inequality
bn
2,,\.,~2+2/B 2 ol
!3. zl(t)t i Bn(In, lIn, 2 In)/In,l :
n

obtained again from (6.15) by completing the square, gives (6.14) for
zl(t) in the case of (6.18). We can argue similarly for zz(t) in the case
of (6.19). Hence the result of this section is:

E. let o >2B -2 andlet p(t) take positive values. Then

(1. 2) makes (1.1) limit-point.

We remark that the result E for the more restricted range a > 4p - 6

follows from a general limit-point criterion of Ismagilov [13] - see also [14].

-19-
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7. Thecase a >2p -2, p(t) <0 forall t

As in §6, we write y = -6 in (3.2) and, since p(t) <0 now,
we can write p'zp(t) = - Qq(t), where Q(t) > 0. Then (3.2) is
- - 6, -
5t) + (ot 2+ t2°Q7 Y W))z(r) = 0. (7.1)

We make the substitution (3. 6) again:

z(t) = u(t)v(t) {7.2)
but, instead of (3.7), we take
N
~16 N -2n6
v(t) = £72°Q(){1 + ), p (77}, (7.3)
.
where the integer N is chosen tc make
2(N +1)6 >6 +1 (7.4)

and the pn(t), to be defined below, have period a. Then, as for (3.9),

we have

2d Zdu 2n63

4. Et‘+u t){l+Z (t)t

N -5 N
x|t ama+) pn(t)t—2n6} NPIRTTD) bn(t)t'zrlé +
1 1

Ay N Lo

vt 2Qm ) B W o 24
I

4
-2nb
}

I
[=]

+ o2 2% %% na + Z Lot

e R i i ot A e 55

-20-




which is

N 3
e d'  2dy -26 3 iy -2nb
gtV gt Tyt Qo4 v p ()t . %
N
5 iy -2nb
x [ Q(t) {1 + L P (1)t b+
N N
. = . -2nd m -2n6
+2Q(1) 2 b (0" + Q1) ), B()t "0 +
o S
N 4
. R - -286=
+{l+>_,p(t)t anS} +O(t2 1) =0 . (7.5)
T n
On expanding {--- }'4 here by the binomial theorem, we obtain (inter
alia) the terms ~'lpn(t)t_2n6 fn =1, v, NY. “Then pn(t) is chosen
-2nb
so that there is no term involving t o in [---]. Thus

3 ooy o
p(t) = - 3 Q" ()Q(1)

and pn(t) (n > 2) involves pl(t), wivie g pn_l(t). Hence the pn(t) are

determined in turn.

(t) involves Q(ZN)

Q(‘2N+2)

It is clear also that (t) and so we must

PN

assume the existence and continuity of (t) and hence of

p(2N+2)(t). The nearer & is to zero, the larger N is (by (7.4)) and

the greater the differentiability required of p(t). If & >1 (for example),
i.e. if o >4p -2, we cantake N = 0 in (7.4) and then we need

only assume the existence and continuity of p(t). More generally, if

2l




+2 ; ;
p(ZN )(t) exists and is continuous, we can deal with the region

2N +
a>2B Z—E——f - 2 since this last inequality is just a re-arrangement
of (7.4). If, therefore, we wish to deal with the entire region « > 23 - 2
with a single differentiability condition on p(t), that condition has

to be that p(t) is infinitely differentiable.

With our choice of the pn(t) described above, (7.5) takes the

form
o-d- 24 -2(N+1)6 < L
most e +u[l + Ot ) + O(t =0 (7.6)
We make the change of variable
t
g = [ vtat.

0
L SRR L
By (7.3); g/t lies between positive constants as t - ©. Hence
(7.6) becomes
Z
d
d§2

et

|

+ U{1 +0(§'d)} =9, (7.7)

where U(£) = u(t), d >1, and we have used (7.4).

Since all solutions U(§) of (7.7) are bounded as £ - ©, again
by pp. 91 - 92 of [ 4], it follows from (7.2) and (7. 3) that all solutions
z(t) of (3.2) are O(t-%é) as t - o, Hence, by (3.1), all solutions
y(x) of (1.1) are O(x-%ﬁé—(ﬁ—”/z) > O(x-%a) as x - ©. Since a > 2,
all solutions of (1.1) are, therefore, LZ(O,OO) and we have the limit-circle
case. Thus the result of this section is:

F. let oa>28-2 andlet p(t) <0 forall t. Also, let p(t) be

finitely diff : . 2) mak 1.1) limit-circle.




8. The case a >2B -2, p(t) <0 forall t, and p(t) taking the
value zero

We do not have a complete analysis of this case but we can say

enough to indicate that the situation is more complicated than in previous

cases in that the order of the zeros of p(t), as well as o and B,

appears to affect the limit-point, limit-circle nature of (1. 2). We shall

give the discussion for the particular potential

Zn(X

a(x) = - x*¥ sin ﬁ) ;
where n 1is a positive integer, but the ideas require only obvious
modifications for suitable more general potentials (1.2). However, it
does remain an open question to what extent (8.1) is typical of all

potentials (1. 2) falling under the heading of this section. There are

certainly complications if p(t) has an infinity of zeros of order 2n

(0,a), or more generally if it vanishes at a point which is' not a zero of

a specific order.

We obtain first a limit-point result for (8.1). We take

)1/[3 - m‘l/2 and bm = (m1r)l/p + m-l/2 in (2.2) (or in

a_ = (mw
m
Corollary 1 of [ 5]). Then (8.1) will be limit-point if

Zn(x

x* sin ﬁ) < Cm

in (a_,b_), where C 1is a constant. To ensure that the (a_,b )
m’ m m’ m

are non-overlapping, at any rate when m is large enough, we take

$<2.

~23=-

(8.2)

(8.3)

e




e

/B sk
Since x = mm)l/‘ + O(m 1 Z) in (am,b“), (8.2) is satisfied if
1
bol B
B ek By
ﬁ T (.n(a ﬁ) _1 y

o +(n—1);3_<_dn -
This condition implies (8. 3) since & > 2. Hence we have

G. Let @ +(n-1)B <2n. Then (8.1) makes (1.1) limit-point.

We now make a conjecture.

H (conjectured). Let o +(n - 1)p >2n. Then (8.1) makes (1.1)

limit-circle.
We support this conjecture with the following remarks. Considering
(3.2), we seek an approximation to solutions of

2 Zow i 2N
t

E(t) + {bt ° + B_Zt sin }z(t) = 0 (8.4)

\ 1 :
throughout an interval [ (m - El;n, (m + E)n], where m is a large

integer and, as in §§6 and 7, & = -y > 0. We define
- - s 2
P(t) = bt 2 48 2t205in>™ :
%
6t = (n + YO pE(yqy)l/aH) (8.5)
mm
and
Vl,n _.A‘!
f(t) = £2(t)P *(t)

Then it can be shown that, both when t - mw is small and when t - mm

is exactly of order I,

“Zd=




i <da e
(a) f(t) X m ° A ”,

(b) f(t)W(&) satisfies an equation approximating to (8. 4), where

W(E) 1is a solution of

2 :
v \;V+g‘“w~ 0.
d§

We omit the routine details of the calculations. Now (b) suggests that
solutions z(t) of (8.4) are approximately of the form f(t)W(¢£) and

hence, by (3.1), that (1.1) is limit-circle if

L) leyw(e) 1222 Pt < o
m

By (8.5) and (8. 6),

Hence (8. 8) holds if

Y _=26/(n+1)-2+2/p fg{("”%)"}

m ¢{(m-3)n}

lwi(g) |%dg < w,

where we have used (8.6) again. Since all solutions W(£&) of (8.7) are
ok

(0§ "n) as & - o the integral term here is bounded if n >1. (The

case n = 1 introduces a negligible logarithm.) Hence (8.8) holds if

26
n+l

2
A e N
g

Since 26 = -2y = -2 + (a + 2)/B, this reduces to a + (n -1)p >2n

as required.

(8.6)

(8.7)

. aa i




——

The rigorization of this argument would appear to involve some
complicated analysis on the lines of the Langer-Titchmarsh approach to
turning points. Although it is hoped that a treatment of this will appear

in due course, the details have not been carried through at the present

time.
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9. Thecase a = 2B - 2
In this section, it is convenient to consider, in place of (1.1),
the equation
y'(x) - {a(x) + bp°x %}y(x) = 0, 9.1

where b 1is as in (3.2). Since the coefficients of y(x) in (9.1) and

(1.1) differ only by a term b(3'zx-2 which is bounded in the neighborhood

of x = », the limit-point, limit-circle nature of (1.1) is the same as

that of (9.1) at x = ®» (cf. [4, p. 225]). When the transformation (3.1)

is applied to (9.1), we obtain, in place of (3.2), the simpler equation

2(t) - B4 Vp(t)z(t) = 0 .
In the present case when a = 28 -2, Y = 0 and we have the periodic
equation
£() - B %p(t)z(t) = 0 . ©.2)

The limit-point, limit-circle nature of (1.1) is connected to the stability
nature of (9.2), a connection which was noted by Sears [19] in a not
dissimilar context. For completeness, we give here the details of this
connection and we refer to [8, §§l.1 - 3] for the necessary theory of (9. 2).

If (9.2) is stable, all solutions of (9.2) are bounded in (0, %)
and so, by (3.1), all solutions y(x) of (9.1) are

O(X-(p—l)/z) i O(X-a/4)

as x -», Since « >2, we have the limit-circle case.

o




If (9.2) is unstable, (9.2) has an exponentially large solution as
t - and the corresponding y(x) is certainly not I,Z(O,w). Hence
we have the limit-point case.
If (9.2) is conditionally stable, but not stable (i.e. case D2 or
case E2 of [ 8, §l1.2] holds), (9.2) has a solution z(t) of the form
z(t) = tle + Pz(t) -
where Pl(t} and Pz(t) have period a or 2a. For this z(t) we have

[ o]

[ 1240 7242 Byt - w
and hence, by (3.1), the corresponding y(x) is not LZ(O, ©). Thus we
have the limit-point case again.

The result, then, of this section is:

I. Let o= 2p-2. I1f(9.2)is stable, then (l.2) makes (1.1)

limit-circle. Otherwise, (l.2) makes (1.1) limit-point.

An example in which both the possibilities in I are realised is
that in which (9. 2) is the Mathieu equation. Here,
2
p(t) = = B (A - q cos 2t) ,
where \ and q are constants with g # 0. Given g, (9.2) can be

made both stable and unstable by choice of \ - see, e.g., [8, §2.5].
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